Electrical equipment manufacturer factory today: What causes the transformer to make abnormal noise? Impurities or gases in the oil: Impurities or gases in the oil inside the transformer may cause unstable oil flow or air oscillations, resulting in abnormal noise. Mechanical failure: Mechanical failures inside the transformer, such as equipment failures such as transformer cooling fans or pumps, may cause abnormal sounds. Loose or leaky pipes: Loose or leaky pipes inside the transformer can cause air oscillations or unstable gas flow, which can produce unusual noises. External environmental factors: Factors such as excessive temperature of the transformer operating environment or noise interference may also cause abnormal sounds. Therefore, if the transformer makes abnormal noise, it is necessary to check and repair the transformer in time. The specific maintenance method needs to be selected according to the cause of the abnormal sound and the specific situation in order to restore the normal operation and stability of the transformer. At the same time, during the installation, operation and maintenance of the transformer, attention should be paid to environmental temperature, humidity, noise and other factors to avoid adverse effects on the transformer. Read additional details on slitting line manufacturers.
Rising temperature: The capacity of the transformer will decrease as the temperature rises. Therefore, it is necessary to consider the appropriate heat dissipation method and heat dissipation area when designing the transformer to ensure that the temperature rise of the transformer does not exceed the allowable range. Connection method: Different transformer connection methods, such as star, delta, etc., will also affect the capacity of the transformer. For the star connection, the capacity of the transformer can be increased by about 3 times; for the delta connection, the capacity of the transformer is relatively small. Insulation level: The insulation level of the transformer determines the insulation capability and safety performance of the transformer, and also affects the capacity of the transformer. To sum up, the capacity of the transformer is related to factors such as input voltage and output voltage, load nature, temperature rise, connection method and insulation level. When selecting a transformer, it is necessary to comprehensively consider various factors according to the actual situation to ensure the normal operation and stability of the transformer.
The metal laser cutting machine focuses the laser emitted from the laser into a laser beam with high power density through the optical path system. The laser beam irradiates the surface of the workpiece to make the workpiece reach the melting point or boiling point. At the same time, the high-pressure gas coaxial with the beam blows away the molten or gasified metal. With the movement of the relative position between the beam and the workpiece, the material will finally form a slit, so as to achieve the purpose of cutting. Laser cutting process uses invisible light beam to replace the traditional mechanical knife. It has the characteristics of high precision, fast cutting, not limited to the limitation of cutting pattern, automatic typesetting, material saving, smooth incision and low processing cost. It will gradually improve or replace the traditional metal cutting process equipment.Want to konw more about metal cutting machine, contact us, one of the most professional metal laser cutting machine manufacturers & suppliers in China.
Oil immersed transformers are the most commonly used equipment mainly because of their simple structure and reliable operation. It has faster heat dissipation, uniform conduction, and better insulation performance than the dry-type transformer.Oil transformers are used in power distribution or electrical substations. Their transformer core and coils are immersed in oil, which cools and insulates. Oil circulates through ducts in the coil and around the coil and core assembly, moved by convection.
A transformer core is a static device that provides a channel for magnetic flux to flow in a transformer. The core is constructed using thin strips of silicone steel. The silicon steel sheets are electrically isolated and coupled to reduce no-load losses in the transformer.The core of a transformer is made of soft iron. Transformers are used in various fields like power generation grid, distribution sector, transmission, and electric energy consumption.
CANWIN adheres to the business policy of high -end manufacturing, intelligent equipment + intelligent factory, comprehensively improves the quality of products and the cutting speed and precision, accelerates the transformation of development mode, and promotes the upgrading of industrial structure In terms of new product development, the company relies on the “Guangdong university of technology provincial thin plate processing and cutting technology engineering center”as an innovation platform, continuously trains and introduces technological talents, and provides intellectual support for the company to enhance soft power and rapid development.
As one of the best electrical equipment manufacturers & suppliers in China,Canwin specialized in transformer electrical equipment, our electrical equipment including cut to length lines, slitting lines and foil winding machines manufacturing.Electrical equipment mainly used as the iron core of various motors, generators and transformer equipment.Electrical equipment manufacturers and suppliers are currently focusing on sustainability, as global power grids must be updated to accept new forms of renewable energy, as well as IoT and enhanced communications platforms. Regardless of the specific application, electrical equipment is paired with detailed instructions for installation & maintenance and is supported by customer support services to ensure that the machine works as intended.
The transformer core provides a magnetic path to channel flux. The use of highly permeable material (which describes the material’s ability to carry flux), as well as better core construction techniques, helps provide a desirable, low reluctance flux path and confine lines of flux to the core. An electrical distribution cabinet is a part of an electrical system whose task is to distribute electrical energy. It includes distribution, protection, measurement, control and signaling instruments. The electrical distribution box also contains wires, various types of insulation, and support components. Read even more info on https://www.canwindg.com/
Digital measurement – Digital measurement of transformers or other components can be conducted, and the measurement results can be called and collected from the process layer and station control layer through digital networks, thus monitoring transformers and other equipment.Status visualization – The operation status of transformers can be visualized and observed in the power grid.Smart grid or other related systems can express the status information of transformer self-detection or information interaction.
Insulation level: There are standards for insulation levels. The insulation level of a transformer with a rated high voltage of 35 kV and a rated low voltage of 10 kV is represented as LI200AC85/LI75AC35, where LI200 indicates that the transformer has a high-voltage lightning impulse withstand voltage of 200 kV, a power frequency withstand voltage of 85 kV, and a low-voltage lightning impulse withstand voltage of 75 kV, and a power frequency withstand voltage of 35 kV. The current insulation level of Aux High-Tech Co., Ltd.’s oil-immersed transformer products is LI75AC35, indicating that the transformer has a high-voltage lightning impulse withstand voltage of 75 kV and a power frequency withstand voltage of 35 kV. Because the low voltage is 400 V, it can be ignored.
Several factors can affect power quality in transmission lines. These include: Load Characteristics: Non-linear loads can generate harmonics that distort the voltage and current waveforms, affecting the power quality. Transmission Line Length: Longer transmission lines have higher impedance, which can cause voltage drops and affect power quality. Faults on the System: Short circuits, ground faults, or equipment failures can lead to voltage sags, swells, or transients, impacting power quality. Switching Operations: The switching on/off of large loads or reactive power compensation devices can cause transient overvoltages that degrade power quality. Grid Interconnections: Interconnections between different power systems can introduce disturbances, affecting the power quality.